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ABSTRACT

Abstract: In formula based inferential statistics, many problems deal
with the estimation of unknown parameters. This paper considersinterval
estimation. Two bootstrap confidence intervals for the parameter ‘p’ of
an unknown population are discussed. They are obtained by the residual
bootstrap and the two-stage wild bootstrap method. The results are
illustrated with an example in which the investigated variable has the
Truncated Negative Binomial distribution. We do not have to know the
population distribution for determining the bootstrap confidenceintervals
for the parameters. This is the great advantage of bootstrap methods.
The authors have developed a computer program that computes
confidence limits using the procedure in this paper.

Keywords: Residua Bootstrap, Wild Bootstrap, Confidence Interval, Truncated Negative
Binomial Distribution.

1) INTRODUCTION

Bootstrapping is a procedure where repeated samples are drawn from the sample, discriminant
analysis is conducted on the samples drawn, and an error rate is computed. The overall
error rate and its sampling distribution are obtained from the error rates of the repeated
samplesthat are drawn. Bootstrapping techniques require a considerable amount of computer
time. However, with the advent of fast and cheaper computing, they are gaining popularity
as aviable procedure for obtaining sampling distribution of statistics whose theoretical
sampling distributions are not known.

In the section 2 we briefly review the different methods of bootstrapping i.e. residuals
method and wild bootstrap and their application for finite populations. Most of bootstrap
literature is concerned with bootstrap implementations of tests, confidence intervals and
application for estimation problems. It has been argued that for these problems bootstrap
can be better understood if it is described as a plug-in method.

The motivation for this paper is to get rid of formula based inferential statistics, to
approximate the sampling distribution for an unknown finite discrete population and to
estimate their parameters.
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2) LITERATURE REVIEW

The Bootstrap Technique

Bradly Efron (1979) has developed a new and major subpart of resampling procedure
name as ‘Bootstrap'. It has swept the field of statistics to an extra ordinary extent. Itsidea
isto develop a setup to generate more data using the information of the original data. True
underlying sample properties are reproduced as closely as possible and unknown model
characteristics are replaced by sample estimates.

Yizb Xl-+el~ ;i=l,2,3,...,N (l)

Let us consider afinite population that can view as aredlization of a certain super population
model.

Where, Yi's are the measurement taken observations, 3 represents the regression parameter,
Xi's are assumed to be auxiliary quantities or past experiences. Also BX; = y; are the true
values of interest. The measurement errors €;’s are the identical and independent (i.i.d.)
random variable such that

= E(g)=and
= Thevariation isindependent of |, i.e. E(g;) = 02

It cannot generally be assumed that the error distribution follows Normal with mean zero
and varianceo?. To perform statistical test and to calculate confidence intervals the
distribution of error €; has to be known. So the great challenge is how to gain information
on the error distribution. Our motivation is to introduce the technique of Bootstrapping
that aids us to extract the information about the residuals and to find the characteristics
of the unknown population.

There are different types of bootstrap technique like;

1. Residuals bootstrap
Let X = (X;,X,, ....X,))" be arandom sample of size n drawn from the Super populanon
model (1). The bootstrap samples are defined as { (X,,Y,)} with Y,=Y,+¢&  where¥; is an

estimate of |, = BX; and &, isresampling fromtheresidualsé ; = ¥; — Y It cannot applicable
under the Heteroscedastic error. So a very strong assumption made here is that the errors
should be independently identical and hence uncorrelated with the design points X;'s.
[Chien Feng Chen (1998)].

2. Wild bootstrap

It is basically atwo stage resampling scheme, that was first suggested by Wu (1986),
modified by Liu (1988) and finally proposed and given its name by Hardle and Mammen
(1993). Itisavariant of residual method but in this procedurei.i.d. observations are drawn
from an external random variable with first moment zero and second and third moments
both being one. The wild bootstrap residuals are constructed through multiplying these
i.i.d. observations by the residuals in place. This method has more freedom for the
assumption of heteroscedasticity.

Chen and Sitter (1993) have proposed atwo stage resampling scheme; first smple random
sampling without replacement in each stratum and then show that the resulting bootstrap
sampleis second order efficient.

In our study we follow the same technique of two-stage wild bootstrapping. That is given

asample S={i,,i,,...,i.} from apopulation u and any estimator 5 as define on model (1).
Estimate the residuals & =Y —X: ; i € S, then generate n independent wild
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bootstrap components{ Z,,....Z} of arandom variable Z with E(Z)=0 and E(Z%)=1 and set

Y—BX+£W|thS£—SZ,,I 2
Technically speaking, each wild bootstrap observation is drawn from a distribution that
mimicsits corresponding sampling distribution through matching up the first three moments.

3) METHODOLOGY & RESEARCH DESIGN

Our focusis to implement bootstrapping on truncated negative binomial distribution, to
estimate its parameter ‘p’ and confidence interval for the same parameter. Let us define
first the truncated negative binomial distribution.

The Truncated Negative Binomial Distribution

The Negative binomial distribution is a two parameter discrete distribution. It is use
extensively for the description of datathat are too heterogeneous to be fitted by the Poisson
distri butl on. It can be defined in terms of the expansion of the negatlve hinomial expansion
(Q-P)*, whereQ =1+ P, P>0, and k is positive real; the (x + 1)" term in the expansion
yields Pr[X X].

Thus the negative binomial distribution with parameters k, P, is the distribution of the
random variable X for which
k

k+x-1\ P * P
Pr[ X = x] = [ ](J (1 - J ;o x=0,1,2,... ©)
k-1 Q Q

WhereQ=1+P,P>0andk > 0.
The mean and variance are

w=kP and p, =kP(l+P) (4)

This parameterization (but with the symbol p instead of P) isthe one introduced by Fisher
(1941). Youmay relateQand Pas, Q=1/pandP=q/p(i.e,p=1/Qandq=P/ Q).
Our aim is to apply the technique of bootstrapping on truncated negative binomial
distributions, to estimate the parameter p and to construct the 95% confidence band. Then
compare these results with the classical approach like maximum likelihood method, normal
approximation.

In most common form of truncation, the zeroes are not recorded, thus the equation (3)
becomes,

B -l[kJr y l][P JX[ PJk
P X =x]=(1-Q ) — | |1- —| ; x=12,., (5)
k-1 Q Q

With mean
u =E(X)= kP (1-Q")" (6)
and variance L L
(kPkakP) __k Pk : 7
(1-Q) (1-Q )

o=

Since the parameters of Negative binomia distribution is not easy to estimate. Its calculation
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is often lengthy and time consuming. Different statisticians proposed some iterative
procedures to overcome this problem. David and Johnson (1952) proposed an explicit
estimator based on the first three sample moments. Sampford (1955) devel oped a reasonably
rapid iterative technique for solving the two moment estimating equations but ultimately
concluded that resulting estimates might only be suitable for use as first approximation
in an iterative solution of Maximum likelihood estimating equations.

[llustrative Example

To illustrate estimation in the truncated negative binomial distribution using bootstrap
method and other classical method, we considered a sample of chromosome breakage that
was originally given by Sampford (1955). Where, the observed samples may be truncated,
in the sense that the number of individua s falling into the zero class cannot be determined.
For example, if chromosome breaks in irradiated tissue can occur only in those cells which
are at a particular stage of the mitotic cycle at the time of irradiation, a cell can be
demonstrated to have been at that stage only if bresks actually occur. Thusin the distribution
of breaks per cell, cells not susceptible to breakage are indistinguishable from susceptible
cellsin which no breaks occur. The sample data are as follows:

X | 1123|456 |7]8|9(10]11(12]13
Obs|(11|6|4(5|0f2 02202012

The sample mean = 3.438, and sample variance = 9.931. The moment estimates of k and
P are 0.632842 and 3.26216 respectively.

These results are obtained by the program coded on Mathematica.

d=FindRoot[{ m==kp(1-(1+p)"(-K))"(-1).m2 (kp(1+p)+k"2 p"2)/(1-(1+p)"(-k))-(k"2 p"2)/(1-
(1+p)" (k)2 {k4} {p.3}]

{kg 0.632842,pg 3.26216}

Sincep=1/Qand Q = 1+ P, therefore
= 0.23462282 (8)

Estimation of confidence interval

Brass Estimate
For this example Cohen (1965) calculated the estimate for p as

b
p = 0.2345 9)
and
b
V (p)=0.0098628

And the 95% confidence interval for pis:
0.2345 + (1.96)(0.09931163) = (0.039849, 0.429151) (10)

Maximum Likelihood Estimate
The maximum likelihood estimate for this example, calculated by Sampford (1955) as,

p =0.2113 (11)
and

V (P) = 0.0097231
And the 95% confidence interval for f)b is:

0.2113 + (1.96 )(0.09860578) = (0.018033, 0.404567) (12)
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4) RESULTS & CONCLUSION

The purpose of this paper isto describe some methods of constructing confidence intervals
for the parameter p of Truncated Negative Binomial Distribution. Various methods, classical
aswell as bootstrap, have been described with example illustrating Sampford (1955) the
application of each procedure. The algorithm for bootstrapping is designed on C++. For
sample one program code for wild bootstrap confidence interval is given on appendix.
Others are with author and can be shown on demand. In order to assist the reader in
assessing the options of the methods for construction of confidence intervals, the results
of the example considered in the article are summarized below:

95% Confidence Interval | Length of
Methods of Estimate for true parameter ‘p’ Confidence
Interval
LL uL

_ Brass Estimate 0039849 | 0429151 | 0.389302
Classical [y imum Likelihood | 0018033 | 0404567 | 0.386534
Standard Bootstrap 0100502 | 0423390 | 0.322888

Bootstrap ™ pesidual Bootstrap 0123139 | 0389920 | 0.266781
Wild Bootstrap 0122231 | 0.356407 | 0.234176

Where, LL = Lower limit  and UL = Upper Limit

By Comparing the classical method with bootstrap, it is vivid that wild bootstrap provides
the confidence bound approximately as precise as the classical method, whereas standard
bootstrap method has a little bit wide confidence interval. And overall we can conclude
that th; bootstrapping provides more easy and sufficient method for finding the confidence
intervals.
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APPENDI X

The algorithm for bootstrapping is designed on C++. For sample one program code for
wild bootstrap confidence interval is given below. Others are with authors and can be
shown on demand.

#include<iostream>
#include<fstream>

using namespace std;

float B = -0.6263;

int power(int num , int pow)

return (pow ==0) ? 1 : num* power(num,pow-1);

void Select_Sort(float arr[],int length)

int min=0;
for (inti =0;i <length; i++)
min =i;
for (intj =i;j <length; j++)
min = (arr[min] >= arr[j]) ?j : min;
if (min!=1)

float temp = arr[min];
arr[min] = arr[i];
arr[i] = temp;

}
}

int main(int argno, char **argv)
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srand(time(NULL));
if ({argno ==4)

intn=13,t=0;

cout << "Enter number of Bootstrap Samples: ";
cin>>t;

int *xi,*yi,*yci,*ei;
float *mean,* variance,* p;
float **esi;

float **ysi;

float **zi;

Xi = new int [n];

yi =new int [n];

yci = new int [n];

e =new int[n];

mean = new float [t];
variance = new float [t];
p = new float [t];
ifstream infile(argv[1]);
int num=0;

char temp ='a;

while (temp !'="\n")
infile.get(temp);
infile.get();

for(inti=0;i<n;i++)

infile >> num,
infile.get();
infile >> num;
xi[i] = num;
infile.get();
infile >> num;
yi[i] = num;
infile.get();
infile >> num;
yci[i] = num;
infile.get();
infile >> num;
ei[i] = num;
infile.get();

es = new float * [t];
ys = new float * [t];
zi = new float * [t];
for(inti=0;i<t;i++)

*(esi +1i) = new float [N];

*(ysi +i) = new float [n];

*(zi +1) = new float [n];
float arr[2] = {-0.6180,1.6180} ;
int count =0, cp=0;

float **xf = new float * [t] , **xsgf = new float * [t];
for (inti=0;i<t;i++)
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*(xf+i) = new float [n];
*(xsgf+i) = new float [n];

float * sumx,* sf,* sxf,* sxsf ,* syi,* sysi,* sel ,* sesi,* szi;
sumx = new float [t];

sf = new float [t];

sxf = new float [t];

sxsqf = new float [t];

syi = new float [t];

sysi = new float [t];

sel = new float [t];

sesi = new float [t];

szi = new float [t];

float s1,s2,53,54,55,56,57,58,59;
int psc = 0;

for(;cp<t;)
{

S1=2=83=A=s5=56=57=s8=59=0;
for(intj=0;j<n;j++)

zi[cp][j] = arr[rand() % 2];
esfcpl(j] = zi[cpl[i] * elil;
ysi[ep][i] = (xi[j] * B) + esi[cp][i];

xflepl(i] = xi[j] * ysi[cp][jl;

int pow = power(xi[j],2);
xsqffep][j] = ysi[cp][j] * pow;
sl +=xi[j];

s2 +=ysi[cp][j];

s3 += xf[cp][j];.

4 += xsqf[cp][j];

s5 +=yci[j];

6 +=ysi[cp][j];

s7 +=d[jl;

s8 += edi[cp][jI;

9 +=zi[cp][j];

sumx[cp] = sl

sf[cp] = s2;

sxf[cp] = s3;

sxsqffcp] = s4;

syi[cp] = S5,

sysi[cp] = 6

sei[cp] = s7;

sesi[cp] = sB;

szi[cp] = s9;

mean[cp] = sxf[cp]/sf[cp];
variance[cp] = ((s4/s2) - (mean[cp] * mean[cp]));
float check = 0;

if (variance[cp] > 0)

check = (variance[cp]/mean[cp]);
check -=1;
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}

else
check = -9999;

if (check < 0)
count++;
else

p[psc++] = check;
Cpt++;
}
}

infile.close();

ofstream out(argv[2]);

ofstream out2(argv[3]);

out2 << "P's" <<"Q = 1+P" << "p = 1/Q" << endl;

for (inti=0;i<t;i++)

out << "Reading Number : " << (i+1) << endl << endl;

out << "S.INo.," << "Xi (x)," <<"Vi," << "Yi* (f)," << "Ei," << "Ei*," << "X{,"
<<UXE M << "Zi" << endl;

for(intj=0;j<n;j++)

out << (j+1) << "' << xi[j] << "' << yci[j] << <<yd[i][j] << ") << @i[]] <<

"< GSI[I][j] <<l xfi][j] << " << quf[l][J] << " << ZI[I][J] << endl

out << "Total: " << sumx[i] <<"," << syi[i] <<* sf[|] <" <<sgi] <<
<< sesifi] << )" << SXf[I] <" << sxsqf[i] << "," << szi[i] << endl << endI

out <<"Mean: << mean[i] << endl;

out << "Variance : " << variance|i] << endl;

out <<"P: " << p[l]

out << endl << endl << endl;

}

float sump =0;
Select_Sort(p,t);
for(inti=1;i<t;i++)

{
(p[i] >= 0) ?sump +=p[i] : p[i];
out2 << p[i] << "," << (1+p[i]) << "," << (U/(1+p[i])) << endl;

out2 << endl <<"Sum : " << sump << endl << endl;

out2 << "Average: ," << (sump/t) << endl << endl;

out2 << endl << "There Were" << (count+cp) <<" PsBut " << count <<" P'sWere
Dropped As They Were Negative' << endl;

out2 << "P[25th] :," << (1/(1 + p[974]))/2.8 << endl;
out2 << "P[975th] :," << (1/(1 + p[24]))/2.8 << endl;
out2.clos«();

out.close();

for(inti=0;i<t;i++)
{ delete]] * (xf+i);

delete[] * (xsqf+i);
delete]] *(ysi+i);
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delete]] *(esi+i);

delete]
deletel
delete]
delete]
delete]
delete]
delete]
delete]
delete]
deletel
delete]

xf;
xsqf;
ySi;
esi;
Xi;

yi;
yci;
e,
mean;
variance;
p;

cout << "Output Is Generated In : " << argv[2] << endl;

cout << "And The List Of P's Are Generated In :

}

else

{

cout << "Usage Error ....... I" << endl;
cout <<"UseltAs:";
cout << "Program.exe InputFile.csv OutputFile.csv Pfile.csv" << endl;

wgaﬂCmuﬂm

return O;

}
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